Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2024-03-26Este modelo computacional simula el crecimiento biomecánico de los tumores de mama

SINC |La herramienta, creada por investigadores de España y EE UU, ayudará a predecir la evolución del cáncer en pacientes a partir de las propiedades mecánicas y del área donde se desarrolla, que se pueden conocer a través de una biopsia o técnicas de imagen.

Científicos de la Universidad Carlos III de Madrid (UC3M) y de la Johns Hopkins University (EE UU) han analizado el crecimiento de los tumores de mama desde una perspectiva biomecánica y han creado un modelo computacional que simula el proceso de invasión de las células cancerosas, en función de las características del tejido circundante y de las uniones celulares, entre otros parámetros.

Este tipo de modelos ayudarán a predecir el progreso de un tumor en pacientes a partir de las propiedades mecánicas (la rigidez, densidad, etc.) y del área donde se desarrolla, que se pueden conocer a través de una biopsia o técnicas de imagen.

Apoyados en modelos experimentales in vitro, el equipo ha desarrollado un modelo que permite simular en un ordenador el crecimiento de tumores

El proceso de crecimiento de un tumor sólido implica su expansión a través del tejido circundante, compuesto habitualmente de una matriz fibrilar (por ejemplo, colágeno). Su expansión depende de muchos factores, como el número total de células del tumor, su volumen y rigidez, su acceso a nutrientes y las propiedades mecánicas del tejido donde se desarrolla.

Apoyados en modelos experimentales in vitro, el equipo ha desarrollado un modelo que permite simular en un ordenador el crecimiento de tumores teniendo en cuenta estos factores.

“En este modelo hemos simulado cómo las células de un tumor de mama se multiplican e invaden el tejido a su alrededor, y cómo se reproducen más o menos según la rigidez y porosidad del tejido alrededor o lo fuertes que sean las uniones de unas células con otras”, explica Daniel García González, profesor de la UC3M y responsable del proyecto ERC 4D-BIOMAP.

Para ello, los investigadores han trabajado con esferoides, que son agrupaciones de células tumorales con diferentes características que están embebidas en una matriz y que funcionan como un modelo, simulando cómo se comportan las células en un cáncer real.

“Son sistemas muy potentes que se están utilizando cada vez más para hacer estudios sobre el comportamiento de los tumores y también para estudios de posibles terapias”, afirma Arrate Muñoz-Barrutia, catedrática en el Departamento de Bioingeniería de la UC3M.

Matemáticas para la proliferación del cáncer

Gracias a estos esferoides, los investigadores han podido modificar en el laboratorio ciertos aspectos biológicos o mecánicos de estos tumores y evaluar cómo estas variables influyen en la proliferación y migración de las células. Posteriormente, han transformado estas observaciones en ecuaciones matemáticas que han implementado en un modelo computacional.

De esta manera, podían comprobar en paralelo (en el simulador en el ordenador y en el modelo experimental con los esferoides en el laboratorio) el comportamiento de las variables que afectan al crecimiento de estos tumores.

“Nuestros nuevos esferoides con varios compartimentos permitieron ajustar las propiedades biomecánicas del sistema al controlar la densidad de colágeno y la expresión de E-cadherina, que desempeñan un papel en la progresión del cáncer de mama. Fue muy emocionante ver el desarrollo de estos procesos desde perspectivas tanto experimentales como computacionales”, indica Denis Wirtz, de la Johns Hopkins.

Si sabemos cuáles son los parámetros mecánicos que afectan a que el tumor crezca más o menos, entonces podríamos utilizar esos datos para mejorar el tratamiento o desarrollar nuevos fármacos a medio o largo plazo
Daniel García González (UC3M)

“Mientras que experimentalmente la proliferación y la invasión a menudo se miden como dos parámetros independientes, observamos un fuerte acoplamiento de estos procesos. El modelo computacional permitió estudiar estos procesos de manera independiente y obtener información sobre las propiedades biomecánicas de nuestro sistema”, apunta Ashleigh Crawford.

Aplicaciones para el futuro

Las aplicaciones de este estudio resultan prometedoras, según los investigadores. “Si sabemos cuáles son los parámetros mecánicos que afectan a que el tumor crezca más o menos, entonces podríamos utilizar esos datos para mejorar el tratamiento o desarrollar nuevos fármacos a medio o largo plazo”, comenta García González.

“Pensamos que estos estudios abren las puertas a desarrollos de tecnologías que permitan caracterizar la mecánica del tumor, lo que puede añadir información relevante para la elección de terapia para el cáncer”, concluye Muñoz-Barrutia.

Referencia:

Crawford A.J. Gomez-Cruz, C. Russo G. C. Huang, W. Bhorkar I. Roy, T, Muñoz-Barrutia, A. Wirtz, D. Garcia-Gonzalez, D. (2024).  Tumor proliferation and invasion are intrinsically coupled and unraveled through tunable spheroid and physics-based models.  Acta Biomaterialia, Volume 175, Pages 170-185, ISSN 1742-7061. https://doi.org/10.1016/j.actbio.2023.12.043

Autor

SINC
Autor
SINC

El Servicio de Información y Noticias Científicas (SINC) es la primera agencia pública de ámbito estatal especializada en información sobre ciencia, tecnología e innovación en español. Fue puesta en marcha por la Fundación Española para la Ciencia y la Tecnología en el año 2008. El equipo de SINC produce noticias, reportajes, entrevistas y materiales audiovisuales (vídeos, fotografías, ilustraciones e infografías).


2024-04-26
No lo llames implante ocular del futuro, llámalo pequeño panel solar capaz de trabajar como tu retina

Unos implantes capaces de trabajar como nuestra retina sin necesidad de baterías ni cableados.

2024-04-23
Vasto y rico: estudiando el océano con simulaciones por computadora de la NASA

Una herramienta desarrollada en la división de Supercomputación Avanzada de la NASA proporciona a los investigadores una visión global de su simulación oceánica en alta resolución. En esta parte de la visualización global, la Corriente del Golfo ocupa un lugar destacado. Las velocidades del agua superficial se muestran desde 0 metros por segundo (azul oscuro) hasta 1,25 metros (aproximadamente 4 pies) por segundo (cian). El vídeo se reproduce a un día de simulación por segundo. Los datos utilizados provienen del consorcio Estimating the Circulation and Climate of the Ocean (ECCO). Créditos: NASA/Bron Nelson, David Ellsworth

2024-04-17
Este robot puede saber cuándo estás a punto de sonreír y devolverte la sonrisa

Los emo pueden predecir una sonrisa humana 839 milisegundos antes de que suceda.

2024-04-16
Tokyo Electron: la futurista ASML nipona con la que Japón quiere convertirse en una potencia de los chips

"Estamos trabajando con nuestros clientes para desarrollar tecnologías que se adentran cuatro generaciones en el futuro". Esta declaración de Nobuto Doi, vicepresidente de Tokyo Electron, es toda una declaración de intenciones. Cuando hablamos de la industria de los equipos de fotolitografía la compañía neerlandesa ASML acapara todo el protagonismo. Y lo merece si tenemos presente que actualmente es la única que ha desarrollado máquinas de litografía de ultravioleta extremo (UVE) y su más reciente y avanzada iteración, los equipos UVE de alta apertura.

2024-04-15
Experiencias de gaming en plataformas de Metaverso

Existen multitud de plataformas de Metaverso a las que podemos acceder con nuestro avatar y experimentar diferentes mundos virtuales. Entre las plataformas más destacadas se encuentran Horizon Worlds, Microsoft Mesh, Spatial, Decentraland y VRChat, en las que podemos acceder a ellas desde distintos dispositivos. En algunas de ellas solo podremos disfrutar de la experiencia mediante gafas de realidad virtual (VR) y en otras, que son multidispositivo, es posible acceder desde dispositivos móviles y desktop.

2024-04-11
Una forma mejor y más rápida de evitar que un chatbot de IA dé respuestas tóxicas

Los investigadores crean un curioso modelo de aprendizaje automático que encuentra una variedad más amplia de indicaciones para entrenar un chatbot para evitar resultados odiosos o dañinos.