Biblioteca54.912 documentos en línea

Artículo

Analysis of liquid steel flow in a multi-strand tundish using numerical methodsAnálisis por métodos numéricos del flujo de acero líquido en un distribuidor multihilo

Resumen

El artículo presenta los resultados del flujo y la mezcla de acero líquido en la artesa de fundición cuando se aplica un inhibidor de turbulencias para modernizar la zona de trabajo de la artesa. El flujo de la artesa de fundición continua de seis cordones de tipo artesa se investigó mediante modelización numérica. Para la modelización de la turbulencia se han utilizado la ecuación de Navier-Stokes promediada por Reynolds (RANS) y los métodos de simulación de grandes corrientes de Foucault (LES). Las simulaciones numéricas se han realizado con el código comercial de volumen finito AnsysFluent.

INTRODUCCIÓN

Los requisitos y normativas relativos a la pureza del acero producido aumentan constantemente, por lo que los modernos tundish empiezan a desempeñar un importante papel en los tratamientos de refinado, mejorando la calidad y pureza del acero fundido [1]. Uno de los factores importantes que afectan a la pureza del acero es el contenido de inclusiones no metálicas en el producto siderúrgico, incluidos su tamaño, cantidad, distribución, composición química y mineralogía. Dado que las inclusiones siguen el movimiento del acero líquido, es necesario analizar en detalle su estructura, que influye en el transporte y la separación de las inclusiones no metálicas [2-3].

También tiene un impacto significativo en el campo de flujo la construcción del espacio de trabajo del distribuidor [4]. El análisis de la estructura del flujo de acero líquido en el interior del distribuidor es difícil de realizar, debido principalmente a las altas temperaturas del proceso que tiene lugar en el distribuidor y a la opacidad visual del acero líquido. Estas limitaciones repercuten en el hecho de que los estudios experimentales se apoyen en gran medida en la modelización numérica [2, 4].

El estado actual de las técnicas de dinámica de fluidos computacional (CFD) permite calcular el flujo de fluidos en el distribuidor con una precisión satisfactoria. Esto se confirma por la buena concordancia entre los campos de flujo predichos matemáticamente y los medidos con el método láser-óptico realizado en modelos de agua [5].

Para modelar el flujo turbulento basado en la ecuación de Navier-Stokes promediada por Reynolds (RANS), se utilizan principalmente modelos k-ε estándar [6-8] o realizables [9]. Las simulaciones numéricas se llevan a cabo con el código comercial de volúmenes finitos AnsysFluent, que utiliza un método numérico basado en las ecuaciones de Navier-Stokes. En la actualidad, se utiliza ampliamente en el análisis exhaustivo de plantas comerciales. En el modelado numérico, la elección del modelo de turbulencia adecuado es crucial, ya que tiene un gran impacto en la estructura del flujo del fluido. En el análisis del flujo turbulento mediante el método RANS se obtienen los valores promediados.

  • Tipo de documento:
  • Formato:pdf
  • Idioma:Inglés
  • Tamaño:186 Kb

Cómo citar el documento

Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.

Este contenido no est� disponible para su tipo de suscripci�n

Información del documento

  • Titulo:Analysis of liquid steel flow in a multi-strand tundish using numerical methods
  • Autor:Warzecha, P.; Warzecha, M.; Merder, T.
  • Tipo:Artículo
  • Año:2015
  • Idioma:Inglés
  • Editor:Croatian Metallurgical Society (CMS)
  • Materias:Fundición Acero líquido Modelado numérico
  • Descarga:0

Así combate Noruega el cambio climático | DW Documental

​Noruega se ha propuesto absorber todas las emisiones de dióxido de carbono de la industria europea. Para ello, pretende bombear el CO2, el elemento más perjudicial para el clima, en las capas rocosas que subyacen al mar del Norte. Un reportaje sobre los riesgos del almacenamiento artificial del dióxido de carbono.

En numerosos procesos de la industria química, metalúrgica o del cemento es inevitable que se genere dióxido de carbono, un gas de efecto invernadero. El gas podría capturarse y transportarse en barco a Noruega. Es una oferta tentadora, porque parece más barata que evitar la producción de CO2. Desde una estación de bombeo al norte de Bergen, se canalizaría sobre el fondo del mar del Norte y luego se introduciría en el suelo, a 2.500 metros de profundidad. En el proyecto Northern Lights, Noruega está probando todas las fases necesarias para aplicar la tecnología de captura y almacenamiento de carbono. En Alemania, hasta ahora ha habido mucha resistencia a los experimentos para almacenar CO2 bajo tierra. Sin embargo, los expertos del Grupo Intergubernamental sobre el Cambio Climático asumen en casi todos sus escenarios que será necesario capturar y almacenar miles de millones de toneladas de gases de efecto invernadero de la atmósfera. De lo contrario, el aumento de temperatura global no podría contenerse por debajo de los dos grados.

Sin embargo, hay una manera natural de fijar los gases de efecto invernadero: volviendo a llenar de agua las turberas, ya que las turberas drenadas son responsables de alrededor del cinco por ciento de las emisiones de gases de efecto invernadero de Alemania. El nivel del agua de las turberas es lo que determina si estas perjudican o protegen el clima: a largo plazo, las turberas podrían fijar grandes cantidades de CO2. El reportaje sopesa los pros y los contras de almacenar el CO2 y se plantea por qué la reinundación de pantanos no avanza desde hace años.