Biblioteca16.920 documentos en línea

Artículo

Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy ImprovementEstimación de los observables de señal GPS L2 utilizando redes neuronales artificiales de perceptrón multicapa para mejorar la precisión posicional

Resumen

En las últimas décadas, debido a la creciente movilidad de personas y bienes, el rápido crecimiento de los usuarios de dispositivos móviles con servicios basados en la ubicación ha aumentado la necesidad de información geoespacial. En este contexto, el posicionamiento utilizando los datos recopilados por los Sistemas Globales de Satélite de Navegación (multi-GNSS) ha ganado más importancia en el campo de la geomática. La calidad de las soluciones está relacionada, entre otros factores, con el tipo de receptor utilizado en el trabajo. Para mejorar el posicionamiento con dispositivos de bajo costo y evitar gastos adicionales del usuario, este trabajo tiene como objetivo proponer la implementación de una Red Neural Artificial (ANN) para estimar los observables del operador GPS L2. Para esto, se seleccionó un modelo de red a través de la técnica de validación cruzada (CV), se estimaron las observaciones y se analizó la precisión de las soluciones. La técnica CV demostró que un Perceptrón multicapa con cuatro capas intermedias y uno con una capa intermedia son las configuraciones más apropiadas para este problema. El procesamiento RINEX de doble frecuencia (con datos artificiales) reveló mejoras significativas. Para algunas pruebas, fue posible cumplir con las regulaciones de georreferenciación de propiedad rural del Instituto Nacional de Colonización y Reforma Agraria (INCRA). Los resultados indican, por lo tanto, que la propuesta metodológica de la presente investigación es muy prometedora para aproximar la calidad de posicionamiento accesible utilizando un receptor de doble frecuencia.

  • Tipo de documento:
  • Formato:pdf
  • Idioma:Inglés
  • Tamaño:847 Kb

Cómo citar el documento

Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.

Este contenido no está disponible para su tipo de suscripción

Información del documento

  • Titulo:Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement
  • Autor:Carletti Negri, Cassio Vinícius; Lima Segantine, Paulo Cesar
  • Tipo:Artículo
  • Año:2020
  • Idioma:Inglés
  • Editor:Universidad Nacional de Colombia
  • Materias:Sistema de posicionamiento global (GPS) Redes neuronales (Computadores)
  • Descarga:1

Cómo citar el documento

Esta es una versión de prueba de citación de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citación de las respectivas fuentes.

Este contenido no está disponible para su tipo de suscripción

Copiar al portapapeles