Biblioteca32.412 documentos en l韓ea

Art韈ulo

Generalization Bounds Derived IPM-Based Regularization for Domain AdaptationRegularización basada en IPM derivada de los límites de generalización para la adaptación del dominio

Resumen

La adaptación de dominios ha recibido mucha atención como una forma importante de aprendizaje por transferencia. Una cuestión que debe considerarse en la adaptación de dominios es la brecha entre el dominio de origen y el dominio de destino. Con el fin de mejorar la capacidad de generalización de los métodos de adaptación de dominios, propusimos un marco para la adaptación de dominios que combina datos de origen y de destino, con un nuevo regularizador que tiene en cuenta los límites de generalización. Este término de regularización considera la métrica de probabilidad integral (IPM) como la distancia entre el dominio fuente y el dominio objetivo y, por tanto, puede acotar el error de prueba de un predictor existente a partir de la fórmula. Dado que el cálculo de IPM sólo implica dos distribuciones, este término de generalización es independiente de los clasificadores específicos. Con los modelos de aprendizaje populares, la minimización del riesgo empírico se expresa como un problema de optimización convexo general y, por tanto, puede resolverse eficazmente con las herramientas existentes. Los estudios empíricos sobre datos sintéticos para la regresión y datos del mundo real para la clasificación muestran la eficacia de este método.

  • Tipo de documento:
  • Formato:pdf
  • Idioma:Ingl閟
  • Tama駉: Kb

C髆o citar el documento

Esta es una versi髇 de prueba de citaci髇 de documentos de la Biblioteca Virtual Pro. Puede contener errores. Lo invitamos a consultar los manuales de citaci髇 de las respectivas fuentes.

Este contenido no est锟 disponible para su tipo de suscripci锟絥

Información del documento