Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2021-10-20Diseñan un cerebelo artificial capaz de controlar un robot de manera predictiva

Fundación Descubre |Este trabajo ha aplicado por primera vez el comportamiento predictivo del cerebelo humano para proporcionar robustez ante retardos temporales variables que afectan a la transmisión de señales de percepción-acción de un ciclo de control robótico. Dicho ‘cerebelo artificial’ es capaz de aprender a realizar una tarea motora bajo distintas circunstancias, prediciendo qué acciones son necesarias para conseguirlo.

Un equipo de científicos de la Universidad de Granada (UGR) ha diseñado un ‘cerebelo artificial’ para control predictivo de un robot, inspirándose así en el comportamiento humano para dar respuesta a desafíos tecnológicos de la robótica. Dicho ‘cerebelo artificial’ es capaz de aprender a realizar una tarea motora bajo distintas circunstancias, prediciendo qué acciones son necesarias para conseguirlo.

Escenario de control inalámbrico vía WiFi. El modelo de cerebelo, ejecutado en el ordenador, recibe la información sensorial del robot y genera la consecuente respuesta motora que es enviada al robot para su ejecución.

Este trabajo, publicado en la revista Science Robotics, ha aplicado por primera vez el comportamiento predictivo del cerebelo humano para proporcionar robustez ante retardos temporales variables que afectan a la transmisión de señales de percepción-acción de un ciclo de control robótico.

El autor principal, Ignacio Abadía Tercedor, del departamento de Arquitectura y Tecnología de Computadores de la UGR, explica que la idea de este trabajo surge de tomar la biología como fuente de inspiración para resolver problemas tecnológicos. “En concreto, aprovechamos características propias del cerebelo y las aplicamos a desafíos actuales de la robótica. Así, hemos desarrollado un modelo simulado de cerebelo que permite controlar el movimiento de un brazo robótico, aprendiendo desde cero cómo realizar una tarea motora determinada. Las principales características del cerebelo que replica nuestro modelo simulado son: aprendizaje y control motor adaptativo y robustez ante los retardos temporales que afectan a la transmisión de señales de percepción-acción”. Esto permite realizar control remoto de robots, incluso a distancias de cientos de kilómetros, y también controlar robots colaborativos bioinspirados, los cuales están dotados de componentes elásticos y flexibles que replican los músculos y tendones del cuerpo humano y dificultan el uso de técnicas de control clásico.

El grupo de investigación ‘Applied Computational Neuroscience’ (Neurociencia Computacional Aplicada), liderado por el catedrático de la UGR Eduardo Ros, tiene una trayectoria de más de 25 años dedicados al estudio de distintos centros nerviosos (cerebelo, oliva inferior, ganglios basales, sistema visual, hipocampo) y su posterior simulación computacional.

La investigación del grupo ha estado centrada principalmente en el cerebelo, centro nervioso que integra vías motoras y sensitivas, gracias a una serie de características que lo hacen único. En contraste con otros centros nerviosos cuya estructura neuronal es más “caótica”, el cerebelo tiene una estructura regular y bien definida, y juega un papel claro y reconocido en el control motor: ejecución de movimientos precisos, coordinación, equilibrio y aprendizaje motor. Estas características convierten al cerebelo en un perfecto candidato para desarrollar modelos simulados computacionalmente y aplicarlos al control robótico.

En un trabajo anterior, los científicos de la UGR ya presentaron la aplicación de un modelo de cerebelo como controlador de los movimientos de un brazo robótico. Se trata de un modelo biológicamente plausible; esto es, la simulación respeta y replica propiedades biológicas previamente estudiadas por otros estudios neurocientíficos.

Aprender tareas motoras

“Esta plausibilidad biológica es lo que, en nuestro estudio, permite al modelo simulado de cerebelo ejercer de controlador motor del robot, aprendiendo a realizar tareas motoras determinadas (trazar distintas trayectorias con el brazo). Así como un niño aprende a montar en bicicleta, descubriendo qué órdenes debe mandar a los músculos de sus piernas para mover los pedales y al resto del cuerpo para mantener el equilibrio, el modelo simulado de cerebelo aprende los comandos que debe enviar a los motores del robot para que el brazo ejecute la trayectoria deseada”, apunta Abadía.

A su vez, el modelo de cerebelo es capaz de adaptarse a cambios en la dinámica del robot, al igual que hacemos nosotros, proporcionando un control adaptativo. A lo largo de nuestra vida las dimensiones y el peso de nuestro cuerpo van cambiando, el entorno en el que nos movemos también es variable y somos capaces de utilizar herramientas de distinto tipo. Es bastante asombroso cómo, a pesar de lo anterior, somos capaces de ir adaptándonos y aprender a controlar nuestro cuerpo de manera precisa bajo distintas circunstancias.


Representación gráfica del campo de la neurorobótica. La biología, por medio de estudios neurocientíficos, sirve de inspiración para afrontar desafíos tecnológicos de la robótica.


“En el campo de la robótica, este no es el caso. Los controladores robóticos clásicos se basan en un conocimiento previo, detallado matemáticamente, de las características dinámicas del robot (peso, dimensiones, potencia de los motores…), así como unas condiciones de entorno apenas modificables. Si alguna de las anteriores se ve alterada, el controlador deja de servir a su propósito y se necesitaría implementar uno nuevo. Imaginemos que cada vez que utilizamos una herramienta (un martillo, una raqueta, una sartén…) necesitáramos un nuevo sistema nervioso calibrado para mover nuestro brazo bajo exactamente estas nuevas condiciones. Afortunadamente, la evolución nos ha provisto de un sistema nervioso capaz de aprender y adaptarse a nuevas circunstancias. Con nuestro modelo de cerebelo intentamos replicar esta adaptabilidad y capacidad de aprendizaje, permitiendo al robot aprender a realizar una tarea motora bajo distintas circunstancias”, destaca el investigador de la UGR.

Otra de las ventajas de este avance científico desarrollado en la UGR es que los investigadores han controlado el robot utilizando una conexión WiFi y también por control remoto, estableciendo una conexión de unos 400 kilómetros entre el controlador (ubicado en Madrid) y el robot (ubicado en Granada). Ambos escenarios suponen un incremento notable en cuanto a retardos temporales se refiere respecto a una conexión clásica. Esto es posible gracias, de nuevo, a la plausibilidad biológica del modelo de cerebelo. La fisiología del cuerpo humano hace inevitable la presencia de retardos temporales en la trasmisión de señales de percepción-acción, y aún así ejercemos un control preciso del movimiento de nuestro cuerpo, donde el cerebelo juega un papel fundamental. Estos retardos, que varían entre decenas y centenas de milisegundos, desestabilizarían un sistema de control robótico clásico, demandando así nuevos enfoques de control para escenarios de creciente interés en los que los retardos temporales son inevitables (control inalámbrico, remoto, en la nube…).

“Así, nuestro controlador robótico bioinspirado responde a desafíos tecnológicos aprovechándose de los millones de años que han permitido a la evolución encontrar las soluciones biológicas más eficientes a los problemas que se le han presentado. Esta es la esencia de campos de investigación como la ingeniería neuromórfica, neurociencia computacional y neurorobótica”, concluye el autor.

Referencia bibliográfica:

Abadía, I., Naveros, F., Ros, E., Carrillo, R. R., & Luque, N. R. (2021). A cerebellar-based solution to the nondeterministic time delay problem in robotic control. Science Robotics, 6(58), eabf2756.


Fundación Descubre
Autor
Fundación Descubre

Es una institución privada sin ánimo de lucro impulsada por la Consejería de Conocimiento, Investigación y Universidad de la Junta de Andalucía. Creada en 2010 bajo un marco legal determinado, nuestro patronato está formado por 22 instituciones de avalado prestigio en investigación y divulgación de la región: universidades, centros de investigación y divulgación, asociaciones, etc.


2024-04-23
Vasto y rico: estudiando el océano con simulaciones por computadora de la NASA

Una herramienta desarrollada en la división de Supercomputación Avanzada de la NASA proporciona a los investigadores una visión global de su simulación oceánica en alta resolución. En esta parte de la visualización global, la Corriente del Golfo ocupa un lugar destacado. Las velocidades del agua superficial se muestran desde 0 metros por segundo (azul oscuro) hasta 1,25 metros (aproximadamente 4 pies) por segundo (cian). El vídeo se reproduce a un día de simulación por segundo. Los datos utilizados provienen del consorcio Estimating the Circulation and Climate of the Ocean (ECCO). Créditos: NASA/Bron Nelson, David Ellsworth

2024-04-17
Este robot puede saber cuándo estás a punto de sonreír y devolverte la sonrisa

Los emo pueden predecir una sonrisa humana 839 milisegundos antes de que suceda.

2024-04-16
Tokyo Electron: la futurista ASML nipona con la que Japón quiere convertirse en una potencia de los chips

"Estamos trabajando con nuestros clientes para desarrollar tecnologías que se adentran cuatro generaciones en el futuro". Esta declaración de Nobuto Doi, vicepresidente de Tokyo Electron, es toda una declaración de intenciones. Cuando hablamos de la industria de los equipos de fotolitografía la compañía neerlandesa ASML acapara todo el protagonismo. Y lo merece si tenemos presente que actualmente es la única que ha desarrollado máquinas de litografía de ultravioleta extremo (UVE) y su más reciente y avanzada iteración, los equipos UVE de alta apertura.

2024-04-15
Experiencias de gaming en plataformas de Metaverso

Existen multitud de plataformas de Metaverso a las que podemos acceder con nuestro avatar y experimentar diferentes mundos virtuales. Entre las plataformas más destacadas se encuentran Horizon Worlds, Microsoft Mesh, Spatial, Decentraland y VRChat, en las que podemos acceder a ellas desde distintos dispositivos. En algunas de ellas solo podremos disfrutar de la experiencia mediante gafas de realidad virtual (VR) y en otras, que son multidispositivo, es posible acceder desde dispositivos móviles y desktop.

2024-04-11
Una forma mejor y más rápida de evitar que un chatbot de IA dé respuestas tóxicas

Los investigadores crean un curioso modelo de aprendizaje automático que encuentra una variedad más amplia de indicaciones para entrenar un chatbot para evitar resultados odiosos o dañinos.

2024-04-11
Dominar el arte de la formación en robótica para las fábricas del mañana

El equipo del proyecto MASTER, financiado con fondos europeos, lanza su primera convocatoria abierta para desarrolladores de tecnologías de realidad extendida. El objetivo es crear innovaciones digitales de aprendizaje que se utilicen en una plataforma abierta para la formación basada en la realidad extendida en el sector manufacturero.