Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2022-10-03Desarrollan un material cerámico para construir implantes que regeneren huesos

Fundación Descubre |Un equipo de investigación de la Universidad de Sevilla ha elaborado una estructura porosa y dura que se integraría en fisuras óseas, estimulando su curación. La propuesta de los investigadores es resistente al calor, a la corrosión, se adecúa mejor a las propiedades físicas del hueso que el titanio y el acero inoxidable. Además, permite la colonización de los tejidos del organismo, disminuyendo la probabilidad de que el cuerpo la rechace.

Un equipo de investigación de la Universidad de Sevilla ha diseñado un material cerámico para construir prótesis que regeneren huesos. En concreto, los expertos proponen como novedad un método de fabricación con carbono en forma de micropartículas de grafito. De la combinación de ambos materiales se obtiene una estructura cristalina extremadamente dura: alúmina porosa. Con este material, podrían elaborarse implantes permanentes que faciliten la formación de nuevo tejido óseo. De esta forma, se presenta como un tratamiento alternativo de roturas y fisuras de huesos.

La alúmina es un material muy resistente y capaz de estimular la generación del nuevo tejido y establecer enlaces químicos con él. Por este motivo, se emplea habitualmente para desarrollar prótesis para las articulaciones e implantes dentales, entre otros usos.

Sin embargo, esta estructura cerámica cada vez se utiliza menos con finalidad clínica debido al surgimiento de otros materiales comerciales muy duraderos y con alta resistencia a los procesos químicos y al óxido como el titanio macizo, que sirve para elaborar válvulas cardíacas o prótesis de rodilla; así como el acero inoxidable, que se emplea en prótesis temporales. No obstante, estos sustitutos poseen una superficie menos porosa y difícil de penetrar. Por este motivo, en ocasiones presentan problemas para que el organismo los acepte y se producen cicatrices en la masa ósea o el rechazo al material.

Los investigadores explican que la combinación con carbono hace que la cerámica obtenida sea aún más porosa de lo habitual. Además, tras un tratamiento químico, se transforma en un material bioactivo, esto es, que interactúa con las células del organismo. Así, sus cualidades físicas permiten que los tejidos lo colonicen, integrándolo en el hueso. De este modo, disminuye la probabilidad de que el cuerpo lo rechace.


La investigadora Manuela González muestra el molde para la preparación de la muestra junto a las condiciones de trabajo en la pizarraLa investigadora Manuela González muestra el molde para la preparación de la muestra junto a las condiciones de trabajo en la pizarra


Enfocado a fisuras

En el artículo ‘Fabrication of Porous Alumina Structures by SPS and Carbon Sacrificial Template for Bone Regeneration’ publicado en Materials, los expertos explican que se centran en un método de fabricación que combina alúmina con carbono. Con esta mezcla, se obtiene un material extremadamente duro, poroso, resistente a la corrosión, al desgaste y no biodegradable, por lo que podría durar más tiempo en el organismo que las prótesis habituales. “Actualmente, hay muy pocos materiales para elaborar este tipo de dispositivos médicos que posean, por un lado, bioactividad y, por otro lado, la estructura porosa y las propiedades mecánicas adecuadas para que los tejidos penetren en ella. En contraste, el que proponemos sí cumple con estas cualidades”, explica a la Fundación Descubre la investigadora de la Universidad de Sevilla Manuela González.

Los expertos explican que enfocaron la elaboración de la alúmina al tratamiento de fisuras en el hueso cortical, es decir, la parte más dura y externa del mismo, como el área inferior del fémur.

Estructura porosa

Para elaborar este material, primero mezclaron polvo de alúmina con carbono de forma manual en un mortero. Después, lo introdujeron en un molde y lo sintetizaron en un dispositivo con atmósfera inerte, es decir, carente de oxígeno, a 1500 grados centígrados. Así, obtuvieron una pastilla densa de alúmina y carbono.

Luego, volvieron a introducir las pastillas en otro horno habitual de laboratorio a temperaturas de hasta 1.400 grados centígrados. De este modo, calcinaron las partículas de carbono y los espacios que dejaron, con un tamaño de hasta 100 micrómetros -equivalente al poro del que nace un cabello-, se convirtieron en las cavidades del material. “Con esta estructura y una vez adaptado a la fisura ósea a tratar, los tejidos del organismo podrían penetrar el material. Esto facilitaría la integración de la prótesis o implante en el cuerpo y ayudaría a regenerar fisuras, como si fuera un puente”, añade el investigador de la Universidad de Sevilla Víctor Morales.

Cualidades físicas

Por último, los expertos realizaron pruebas analíticas habituales en el laboratorio para determinar las cualidades estructurales y mecánicas de la cerámica, esto es, la elasticidad, plasticidad, dureza, tenacidad y fragilidad del material. De esta forma, determinaron que la estructura porosa de alúmina era rígida y resistente. “No obstante, también comprobamos que para emplear esta estructura, necesitamos mejorar el proceso de fabricación de modo que el material soporte un mayor peso, sea más resistente y se adapte mejor al movimiento del hueso”, explica Manuela González.


molde preparación aluminaMolde para preparar la alúmina.


Actualmente, investigadores del grupo Propiedades Mecánicas, Procesado y Modelización de Cerámicas Avanzadas se centran en mejorar las cualidades físicas de este biomaterial.

Este estudio ha sido financiado por fondos FEDER (proyecto PGC2018-094952-B-I00, INTRACER) y el Ministerio de Ciencia e Innovación. Asimismo, ha recibido apoyo de la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía y la Universidad de Sevilla.

Referencias

González-Sánchez, M., Rivero-Antúnez, P., Cano-Crespo, R., & Morales-Flórez, V. (2022). Fabrication of Porous Alumina Structures by SPS and Carbon Sacrificial Template for Bone Regeneration. Materials, 15(5), 1754.

Fundación Descubre
Autor
Fundación Descubre

Es una institución privada sin ánimo de lucro impulsada por la Consejería de Conocimiento, Investigación y Universidad de la Junta de Andalucía. Creada en 2010 bajo un marco legal determinado, nuestro patronato está formado por 22 instituciones de avalado prestigio en investigación y divulgación de la región: universidades, centros de investigación y divulgación, asociaciones, etc.


2022-11-26
Hallan genes bacterianos que eliminarían residuos textiles en las aguas

Mucha de la ropa que usted se pone y que en unos años seguro va a desechar o a cambiar, terminará siendo botada al mar, lo cual es problemático porque sus materiales tienen compuestos químicos que impactan la salud del agua. Una bacteria marina llamada Achromobacter denitrificans parece tener dentro de sí la clave para reducir el impacto en la contaminación de los residuos textiles.

2022-11-25
Diseñan un recubrimiento antibacterias para proteger las superficies de acero inoxidable

Un equipo de investigación del Instituto de Ciencia de Materiales de Sevilla (ICMSE-CSIC) ha desarrollado una capa nanoestructurada en forma de columnas que mejora la capacidad anticorrosiva de este metal y frena su deterioro. Los expertos proponen emplearla como revestimiento para instrumental sanitario o electrodomésticos.

2022-11-25
La tecnología del ARNm nos libró del COVID: ahora se ha propuesto salvarnos de la gripe definitivamente

Según la Organización Mundial de la Salud, cada año, hasta 650.000 personas mueren por enfermedades respiratorias relacionadas con la gripe estacional. 650.000 personas cada año y pese a ello, seguimos sin ser capaces de crear una vacuna realmente universal contra la gripe. Al menos hasta hoy: cuando una vacuna basada en ARN mensajero puede cambiarlo todo.

2022-11-24
México: altos niveles de aluminio y otros contaminantes en presa Madín

Las personas que se abastecen de la presa Madín, ubicada en la zona Metropolitana de México, una de las más pobladas del país, están expuestas a estrés oxidativo, debido a la presencia de diversas sustancias minerales como el aluminio.

2022-11-22
Unos 300 identificarán los patógenos que pueden desencadenar pandemias, entre ellos el de la Enfermedad X

De esa forma, la agencia de la salud de la ONU actualizará la lista de patógenos prioritarios, una herramienta que sirve para dar una respuesta rápida ante cualquier posibilidad de que se produzca una pandemia.

2022-11-21
Mecanoquímica: la industria sostenible del mañana

La Mecanoquímica es una de las ciencias más antiguas empleada por la humanidad. Como se deduce del nombre, se basa en el concepto de que la energía mecánica ejercida sobre un material produce transformaciones químicas y aporta cambios físicos al mismo.