Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2020-01-18Premio Wolf para Pablo Jarillo por dar un giro al grafeno

SINC |El investigador español Pablo Jarillo Herrero del Instituto Tecnológico de Massachusetts ha sido galardonado, junto al canadiense Allan H. MacDonald y el israelí Rafi Bistritzer, con el Premio Wolf de Física 2020 por sus trabajos sobre el grafeno de doble capa girado. Cuando se rotan dos capas de este material con un ángulo de 1,1 grados se convierte de forma sorprendente en superconductor.

Si se coloca una capa de grafeno encima de otra con el llamado ángulo de rotación ‘mágico‘ de 1,1 grados, las propiedades electrónicas del sistema se asemejan a las de un superconductor. Este avance, que algún día podría aplicarse en transistores superconductores y computación cuántica, lo presentó en 2018 el físico español Pablo Jarillo y otros científicos del Instituto Tecnológico de Massachusetts (MIT) en EE UU.

Las predicciones de MacDonald y Bistrizer en 2011 sobre el revolucionario potencial del grafeno bicapa girado las demostró Jarillo en el MIT en 2018

Ahora, Jarillo acaba de ser galardonado con el prestigioso Premio Wolf de Física de este año, un reconocimiento que comparte con los dos investigadores que predijeron el enorme potencial del grafeno bicapa girado: el canadiense Allan H. MacDonald y el israelí Rafi Bistritzer. El premio, que otorga la Fundación Wolf de Israel y considerado a veces como la antesala de los Nobel, reconoce los trabajos teóricos y experimentales en este campo de los tres científicos.

El grafeno es un material de carbono que sirve para desarrollar nuevas tecnologías en multitud de campos, reduciendo costes y beneficiando al medio ambiente. En el caso de la industria electrónica e informática se requieren materiales cuya conductancia (facilidad para conducir la corriente) se pueda controlar, un ámbito en el que el grafeno de doble capa girado ofrece diversas posibilidades desde que se comenzaron a investigar en 2004.

El trabajo de Jarillo, MacDonald y Bistrizer ha demostrado que las propiedades de conductancia de las interfaces de grafeno se pueden controlar rotando las capas, descubriendo que, en ciertos ángulos, los electrones exhiben un comportamiento físico sorprendente. Este hallazgo podría conducir a una revolución energética.

En 2011, un grupo dirigido por Allan Macdonald, físico teórico de la Universidad de Texas, investigó el intrigante comportamiento del grafeno bicapa ‘retorcido‘ con determinados ángulos de giro. Según los cálculos de MacDonald y Bistrizer (que en ese momento realizaba su tesis postdoctoral bajo la supervisión de MacDonald), la velocidad de los electrones entre las capas varía según el ángulo y desaparece por completo con el ángulo mágico de 1,1 grados.

El gran descubrimiento tuvo que esperar

Se esperaba que este descubrimiento condujera a la creación de un nuevo tipo de superconductor, es decir, un material que permitiera el paso de la corriente eléctrica sin impedancia (resistencia de un circuito) y sin pérdida de energía. Sin embargo, el artículo original de MacDonald y Bistrizer, que describía este avance no fue recibido con entusiasmo por la comunidad científica e incluso fue olvidado durante varios años.

Pero, al mismo tiempo, Jarillo-Herrero estaba trabajando en grafeno de doble capa girado en su laboratorio en el MIT, y consideró que las ideas expresadas por Macdonald y Bistrizer tenían sentido.

Cuando se giran dos capas de grafeno con el ángulo mágico (1,1 grados) el sistema resultante actúa como los materiales superconductores no convencionales. / Pablo Jarillo-Herrero et al.

Junto a su equipo, se esforzó en crear y medir grafeno bicapa ‘retorcido‘ con varios ángulos de giro. Los experimentos tuvieron éxito en 2017 cuando comprobó que colocando las dos capas con el ángulo mágico se conseguían propiedades eléctricas inusuales, como MacDonald y Bistrizer habían sugerido.

En esa posición, a temperaturas suficientemente bajas, los electrones se mueven de una capa a otra, creando un enrejado con cualidades inusuales. El estudio que publicó en Nature en 2018 revolucionó la física y desencadenó una avalancha de documentos adicionales.

Este descubrimiento abre la puerta a la construcción de un superconductor con grafeno bicapa, donde el movimiento de electrones está completamente controlado por la corriente eléctrica externa.

Este comportamiento eléctrico se asemeja al comportamiento de los superconductores a base de cobre llamados cupratos. Estos ofrecen una conductividad eléctrica sin resistencia a temperaturas relativamente altas en comparación con otros superconductores.

De hecho, los cupratos podrían hacer realidad el sueño de la conductividad eléctrica sin pérdida de energía a temperaturas cercanas a la temperatura ambiente. Si esto se lograra, conduciría a una revolución energética de gran alcance.

Sin embargo, un obstáculo que impide esa revolución es que todavía no existe una teoría que explique el comportamiento de los superconductores a altas temperaturas. En ausencia de una base teórica sólida, es difícil desarrollar nuevos y mejores materiales. Esta es una de las razones por las que están puestas las esperanzas en las posibilidades del grafeno bicapa y su ángulo mágico, que permite comprender mejor lo que sucede a nivel microscópico cuando se pasa de un estado conductor a otro superconductor.

Pablo Jarillo-Herrero (Valencia, 1976) es un físico experimental de materia condensada que trabaja en transporte electrónico cuántico y optoelectrónica en nuevos materiales bidimensionales. Su laboratorio investiga sus propiedades superconductoras, magnéticas y topológicas. Jarillo-Herrero se unió al MIT en 2008 y fue ascendido a profesor titular en 2018. Se licenció en Física en la Universidad de Valencia en 1999, realizó un máster en ciencias en la Universidad de California en San Diego en 2001, y su doctorado en la Universidad Tecnológica de Delft (Países Bajos) en 2005.

SINC
Autor
SINC

El Servicio de Información y Noticias Científicas (SINC) es la primera agencia pública de ámbito estatal especializada en información sobre ciencia, tecnología e innovación en español. Fue puesta en marcha por la Fundación Española para la Ciencia y la Tecnología en el año 2008. El equipo de SINC produce noticias, reportajes, entrevistas y materiales audiovisuales (vídeos, fotografías, ilustraciones e infografías).


2024-04-19
La Inteligencia Artificial (IA) entendiendo el lenguaje humano

Desde 1950, con el artículo de Alan Turing Maquinaria informática e inteligencia y la publicación de la novela Yo, robot de Isaac Asimov, la Inteligencia Artificial viene evolucionando año tras año de forma más rápida.

2024-04-17
La NASA refina las prioridades nacionales de desarrollo de tecnología espacial

Mientras la NASA se centra en explorar la Luna, Marte y el sistema solar en beneficio de la humanidad, la Dirección de Misiones de Tecnología Espacial (STMD) de la agencia está cambiando la forma en que prioriza el desarrollo tecnológico. Como parte de este esfuerzo de refinamiento, la NASA está pidiendo a la comunidad aeroespacial estadounidense comentarios sobre casi 190 necesidades (o deficiencias) de tecnología espacial nacional que ha identificado para futuros esfuerzos científicos y de exploración espacial.

2024-04-17
La ciencia de los grandes descubrimientos científicos es cada vez más elitista e interdisciplinaria

Un trabajo del Instituto de Análisis Económico (IAE-CSIC) analiza la edad, género, formación y procedencia de los autores de más de 700 grandes hallazgos científicos desde 1600 hasta la actualidad

2024-04-17
8 principios para la publicación científica según el International Science Council

El International Science Council (ISC), organización no gubernamental creada en 2018, promueve la ciencia como bien público global, respaldando la universalidad del conocimiento científico. A través de una política científica, busca mejorar la publicación académica en la era digital, basándose en 8 principios para la publicación científica, que incluyen acceso abierto, revisión rigurosa y garantía de acceso para futuras generaciones.

2024-04-16
Cristales antibacterianos de cobre y níquel aportarían a la prevención de futuras pandemias

Después de exponerlos a un proceso químico se encontró que el cobre y el níquel inhibieron con éxito el crecimiento de "Bacillus cereus" y "Staphylococcus aureus", bacterias con cepas resistentes a los antibióticos y relacionadas con enfermedades de transmisión alimentaria (toxiinfecciones). El hallazgo permitiría pensar en nuevos tratamientos farmacológicos o en la elaboración de empaques especiales que protejan productos como carnes y verduras.

2024-04-15
El CERN no decepciona. ATLAS nos recuerda a golpe de exitazo por qué es importante invertir en física de partículas

El bosón W es, junto al Z, una de las partículas responsables de la mediación que tiene lugar en la interacción nuclear débil, que es una de las cuatro fuerzas fundamentales de la naturaleza junto a la interacción electromagnética, la gravedad y la interacción nuclear fuerte. Los físicos suelen colocar a este mismo nivel el campo de Higgs, que es otra interacción fundamental que explica cómo las partículas adquieren su masa, pero para facilitar su comprensión los textos suelen recoger como fuerzas fundamentales las cuatro que acabo de mencionar.