Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2022-07-18Un nuevo método basado en materiales inteligentes muestra el daño celular en tiempo real

CORDIS |¿Qué ocurre con las células durante un traumatismo craneoencefálico o una cicatrización de la piel? Científicos respaldados por la Unión Europea han desarrollado un nuevo método experimental basado en polímeros magnetoactivos blandos para estudiar el comportamiento celular.

Las células biológicas están sometidas constantemente a la tensión mecánica de los sustratos que las rodean, lo que afecta a su comportamiento. Con el apoyo del proyecto financiado con fondos europeos 4D-BIOMAP, ahora los investigadores han desarrollado un método novedoso basado en polímeros magnetoactivos para estudiar el comportamiento celular. Sus hallazgosse publicaron en la revista «Applied Materials Today». El nuevo método experimental-computacional permite a los investigadores controlar de forma no invasiva los modos complejos de deformación de los sustratos celulares en tiempo real. Gracias a este sistema, los científicos pueden evaluar al instante los efectos mecánicos sobre las células y el efecto sobre las diferentes respuestas biológicas. Según el estudio similar, la estimulación no invasiva es posible gracias a la capacidad de los materiales magnetoactivos blandos al caucho, llamados «elastómeros magnetorreológicos» (EMR), de responder mecánicamente a los campos magnéticos externos. Los EMR consisten en una matriz polimérica blanda (polidimetilsiloxano) que contiene partículas magnéticas micrométricas (polvos de hierro carbonilo). Cuando se someten a un campo magnético externo,

El análisis en tiempo real del daño celular es posible

El sistema propuesto allana el camino para que los científicos puedan conocer los procesos mecanobiológicos que se producen durante estados de deformación complejos y dinámicos, como un traumatismo craneoencefálico, una cicatrización patológica de la piel y una remodelación fibrótica del corazón durante un infarto de miocardio. «Hemos conseguido reproducir las deformaciones locales que ocurren en el cerebro cuando está sometido a un impacto. Esto permitiría reproducir en el laboratorio estos casos, analizando en tiempo real lo que les ocurre a las células y cómo se dañan», explica el doctor Daniel García González, de la Universidad Carlos III de Madrid (España), anfitriona del proyecto 4D-BIOMAP , en una nota de prensa publicada en EurekAlert!. «Además, hemos validado el sistema demostrando su capacidad para transmitir fuerzas a las células y actuar sobre ellas». Los investigadores diseñaron un sistema de imagen y estimulación con varios componentes que utilizan las propiedades multifuncionales de los EMR para controlar la deformación mecánica de los sustratos celulares de forma no invasiva. En primer lugar, se fabricaron diferentes EMR con distintos grados de rigidez e intensidad de tratamiento magnetomecánico.

Tras analizar los mecanismos que rigen el comportamiento de los materiales, el equipo desarrolló un marco «in silico» multifísico y multiescala para guiar la configuración experimental de la estimulación. A continuación se encuentra la versatilidad y viabilidad del sistema mediante su capacidad para reproducir entornos mecánicos complejos que simulan patrones locales de tensión en el tejido encefálico durante un impacto craneal y su capacidad para transmitir fuerzas mecánicas a sistemas celulares (fibroblastos dérmicos humanos). Tal como los autores explican en su estudio: «A diferencia de los métodos anteriores […], logramos que lo siguiente sucediese al mismo tiempo: una estimulación mecánica no invasiva (a través de campos magnéticos), un control en tiempo real de la estimulación mecánica y unos modos de deformación (complejos) alternos que controlan los cambios locales, tanto en la magnitud como en los componentes principales de la tensión». 

Según comenta García González en el comunicado de prensa: «Toda esta ciencia básica la hemos empleado para, apoyados por el modelo computacional, diseñan un sistema de actuación inteligente que, acoplado a un microscopio desarrollado dentro de la ERC, no permite visualizar la respuesta celular ‟in situ”. De esta manera, hemos consolidado un marco completo para estimular los sistemas celulares con materiales inteligentes magnetoactivos». El proyecto 4D-BIOMAP (Estimulación biomecánica basada en polímeros magnetoactivos impresos en 4D), de cinco años de duración, utiliza potentes métodos de impresión para crear polímeros magnetoactivos y caracterizarlos en aplicaciones críticas relacionadas con el funcionamiento del sistema nervioso. Este proyecto finaliza en diciembre de 2025. Para más información, consulte: nos permite visualizar la respuesta celular ‟in situ”. De esta manera, hemos consolidado un marco completo para estimular los sistemas celulares con materiales inteligentes magnetoactivos». 

El proyecto 4D-BIOMAP (Estimulación biomecánica basada en polímeros magnetoactivos impresos en 4D), de cinco años de duración, utiliza potentes métodos de impresión para crear polímeros magnetoactivos y caracterizarlos en aplicaciones críticas relacionadas con el funcionamiento del sistema nervioso. Este proyecto finaliza en diciembre de 2025. Para más información, consulte: nos permite visualizar la respuesta celular ‟in situ”. De esta manera, hemos consolidado un marco completo para estimular los sistemas celulares con materiales inteligentes magnetoactivos». El proyecto 4D-BIOMAP (Estimulación biomecánica basada en polímeros magnetoactivos impresos en 4D), de cinco años de duración, utiliza potentes métodos de impresión para crear polímeros magnetoactivos y caracterizarlos en aplicaciones críticas relacionadas con el funcionamiento del sistema nervioso. Este proyecto finaliza en diciembre de 2025. Para más información, consulte: de cinco años de duración, utiliza potentes métodos de impresión para crear polímeros magnetoactivos y caracterizarlos en aplicaciones críticas relacionadas con el funcionamiento del sistema nervioso. Este proyecto finaliza en diciembre de 2025. Para más información, consulte: de cinco años de duración, utiliza potentes métodos de impresión para crear polímeros magnetoactivos y caracterizarlos en aplicaciones críticas relacionadas con el funcionamiento del sistema nervioso. Este proyecto finaliza en diciembre de 2025. Para más información, consulte:

Proyecto 4D-BIOMAP

CORDIS
Autor
CORDIS

El Servicio de Información Comunitario sobre Investigación y Desarrollo (CORDIS) es la principal fuente de la Comisión Europea los resultados de los proyectos financiados por los programas marco de investigación e innovación de la UE (desde el 1PM hasta Horizonte 2020). Nuestro objetivo es acercar los resultados de investigación a los profesionales del sector para fomentar la ciencia abierta, crear productos y servicios innovadores y estimular el crecimiento en toda Europa.


2023-02-01
Cómo hacer que los hidrogeles sean más inyectables

Un nuevo marco computacional podría ayudar a los investigadores a diseñar hidrogeles granulares para reparar o reemplazar tejidos enfermos.

2023-02-01
Etiquetas del mismo material que los envases para impulsar el reciclaje

Un informe de Planet Tracker aboga por que los fabricantes usen en sus etiquetas el mismo material que en el envase para facilitar el reciclaje en bucle cerrado y mejorar la oferta de plásticos recuperados.

2023-01-31
Estudio: La superconductividad se activa y desactiva en el grafeno de «ángulo mágico»

Un pulso eléctrico rápido cambia por completo las propiedades electrónicas del material, abriendo una ruta hacia la electrónica superconductora ultrarrápida, inspirada en el cerebro.

2023-01-31
El Proyecto REPurpose diseñará plásticos elastómeros seguros y sostenibles a partir del reciclado de residuos posconsumo

Encontrar un modo sostenible de conformar una economía de residuo cero es primordial para mantener un sistema de consumo consciente de los límites de nuestro planeta, en especial en el caso de materiales versátiles y tan extendidos como el plástico. En los próximos cuarenta años, se estima que el consumo global de materiales como la biomasa, los combustibles fósiles, el metal y los minerales doblará su cifra, lo que tendrá consecuencias negativas en los seres humanos y en el medio ambiente. La producción anual de plásticos es de casi 380 Mt y, para 2035, está previsto que se doble esa cifra e incluso se cuadruplique en 2050. Por esta razón, es necesario identificar soluciones que ayuden a usar los recursos de manera efectiva y eficiente para la producción de estos materiales.

2023-01-31
Aplican residuos del vino para eliminar metales pesados de aguas

Un equipo de investigación de la Universidad de Cádiz propone el uso de biomasa procedente de residuos agroalimentarios para la captación de minerales nocivos presentes en sistemas acuosos. Este procedimiento permite reutilizar los desechos de esta industria, sin necesidad de procesos complejos, en la remediación de ecosistemas.

2023-01-28
Convierten los residuos plásticos en nuevos productos de valor

Dar una nueva vida a los residuos plásticos sí es posible. Este es el objetivo de ‘MAREA Plastic’ – Malaga Reaction Against Plastic- un proyecto liderado por los investigadores de la Escuela de Ingenierías Industriales de la UMA Óscar de Cózar y Carmen Ladrón de Guevara, que, a través de un proceso de economía circular, transforma los desechos en nuevos productos de valor.