logo móvil
logo tablet

Cookies y Privacidad

Usamos cookies propias y de terceros para mejorar la experiencia de nuestros usuarios, analizar el tráfico del sitio y personalizar contenido. Si continúas navegando, asumimos que aceptas su uso. Para más información, consulta nuestra Política de Cookies

Portada

Cristales líquidos. / Unimedios

2020-09-01

Cristales líquidos quirales aumentarían velocidad de pantallas ópticas


Teniendo en cuenta que lo que consume la batería de un celular es la pantalla, con dichas fases azules, una batería podría durar hasta 100 veces más, explica el profesor Juan Pablo Hernández-Ortiz, director del Laboratorio One-Health de la Universidad Nacional de Colombia (UNAL) Sede Medellín, y agrega que “esta es una condición sumamente deseable en el mundo de las pantallas ópticas”.

Este resultado –publicado en la revista Science Advances de julio pasado– es fruto de un programa investigativo de más de 15 años en la UNAL Sede Medellín y en la Universidad de Chicago, que estudia cómo manipular cristales líquidos quirales y no quirales para utilizarlos en aplicaciones ópticas.

“Los cristales líquidos son moléculas alargadas o aplanadas, y en ciertas condiciones se organizan y forman fases fluidas cristalinas y líquidas, lo que las hace muy especiales, dado que las pantallas de computadores hechas de estos materiales son suaves al tacto y permiten que el usuario deforme las imágenes al tocarlas”, detalla el docente.

Los cristales líquidos quirales son muy importantes porque responden a estímulos en sub-milisegundos: “en una pantalla de cristal líquido se hacen estímulos eléctricos y magnéticos para que las moléculas se orienten y esa diferencia de orientación es lo que percibimos visualmente como imágenes”.

En ese sentido, indica que las pantallas actuales necesitan impulsos relativamente fuertes y se demoran milisegundos en hacer esa respuesta: “nosotros no los percibimos pues son periodos muy cortos, y solo observamos los cambios de imágenes en la pantalla”.

Una molécula quiral es aquella que tiene una imagen que no se superpone en el espejo; las manos humanas son el ejemplo de quiralidad más reconocido: la una es un espejo de la otra, pero la mano izquierda no es superponible en la derecha.

Los investigadores del Laboratorio One-Health de la UNAL Sede Medellín y la Universidad de Chicago, lograron controlar la transición de formas en microgotas de cristales líquidos quirales –materiales que responden a estímulos de manera casi inmediata– y son importantes en aplicaciones de pantallas ópticas y sensores biológicos.

“Estudiamos las transiciones de las morfologías que hacen gotas de cristales líquidos quirales y controlamos las morfologías internas de la gota. Esto es ingeniería molecular, mediante la cual se prediseñan las moléculas para que estas se comporten de manera específica bajo ciertas condiciones”, señala el científico.

Avances en sensores biológicos

Las llamadas “fases azules” generadas por los cristales líquidos también representarían un gran avance en los sensores biológicos, área más trabajada por los investigadores, explica el profesor Hernández.

“En ciertas condiciones, una gotica de cristal líquido tiene una morfología que produce un color particular; si llega una molécula que distorsione esa forma, se percibe un cambio de color, y así se obtiene un sensor biológico”, precisó.

Y si se hiciera con fases azules sería mucho más sensible, logrando un sensor casi perfecto, indica el académico: “podemos diseñar una cinta polimérica con microgotas del cristal líquido, lo que genera un color azul perceptible”.

“El diseño de la cinta es tan preciso, que al caminar por la calle y entrar en contacto con una bacteria o un patógeno, una sola molécula que se pegue a la cinta cambiaría su color y se podría detectar muy rápidamente, de manera económica y segura”.

Estos dos logros dieron lugar a la publicación en Science Advances, por lo que el científico señala: “todo el mundo quiere utilizar fases azules, pero son inestables: en la configuración que obtuvimos de gotas en el polímero logramos estabilizarlas a temperatura ambiente. Se pueden generar tensión, estirarlas, cambiar la forma de la fase y ellas se recuperan. Eso es algo muy importante: aumentar los rangos de estabilidad de las fases azules en cristales líquidos, y hoy es uno de los temas más importantes de investigación en el mundo”

El profesor Hernández recuerda que hace unos años, después de un trabajo extenso con cristales líquidos en nano y microcanales, lograron un sensor biológico altamente sensible para enfermedades cerebrales como Parkinson y Huntington, y ahora trabajan en hacer un sensor y en manipular la ubicación de nanopartículas dentro de estas gotas para aplicaciones fotónicas y diseño de materiales inteligentes que se autorreparan

Además, inspirados en preguntas sobre cómo la naturaleza genera cambios de color y patrones con moléculas cristales líquidas de insectos y animales, con esta investigación demostraron que sí es posible hacer una deformación para cambiar morfologías, texturas y colores de las gotas. Para el investigador, “también se trata de un logro muy importante porque genera un racional de un fenómeno natural que era desconocido”.

Autor
Imagen Unimedios | Agencia de Noticias UN

Unimedios | Agencia de Noticias UN

La Unidad de Medios de Comunicación – Unimedios, es la unidad de producción y difusión de la información científica, cultural, investigativa, académica, artística y tecnológica generada por la Universidad Nacional de Colombia y dirigida a la comunidad universitaria y a la sociedad en general. Es una dependencia de nivel nacional, adscrita a la Rectoría que articula los medios de comunicación existentes dentro de la Unidad para velar por el buen nombre e imagen de la Institución, promover y agenciar sus logros e integrarla en su diversidad y con la sociedad a través de sus medios, servicios y productos.

Noticias más leídas

Temas Virtualpro