Cookies y Privacidad
Usamos cookies propias y de terceros para mejorar la experiencia de nuestros usuarios, analizar el tráfico del sitio y personalizar contenido. Si continúas navegando, asumimos que aceptas su uso. Para más información, consulta nuestra Política de Cookies

Imagen de microscopía confocal con la localización de la proteína Sinaptotagmina 1 unida a la proteína fluorescente GFP. / IHSM La Mayora
2025-06-06
Revelan un nuevo mecanismo molecular que permite a las plantas sobrevivir al estrés ambiental
Personal investigador del Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-CSIC-UMA) ha identificado un mecanismo molecular que las plantas utilizan para sobrevivir en condiciones de estrés continuo. Publicado en la revista Proceedings of the National Academy of Sciences (PNAS), este estudio se centra en proteínas de tráfico que se localizan en nanodominios específicos conocidos como sitios de contacto: diminutas regiones dentro de una célula vegetal donde la membrana externa (membrana plasmática) se aproxima al sistema membranoso interno conocido como "retículo endoplasmático". Estas proteínas actúan como puentes entre ambas membranas, sirviendo como autopistas para la transferencia de moléculas de señalización que la planta utiliza para adaptar su fisiología a condiciones ambientales desfavorables.
En la naturaleza, las plantas prosperan bajo condiciones subóptimas, enfrentando múltiples desafíos ambientales como variaciones de temperatura entre el día y la noche, escasez de agua, heterogeneidad del suelo, patógenos microbianos, herbívoros, etc. En el contexto del cambio climático, donde las condiciones ambientales se vuelven cada vez más impredecibles y extremas, identificar los mecanismos de resistencia que las plantas poseen de manera natural puede ayudar a desarrollar cultivos que puedan sobrevivir y prosperar. Esto garantiza la seguridad alimentaria, protege los ecosistemas y respalda una agricultura sostenible en un mundo que cambia rápidamente.
Ante el estrés, las plantas activan una miríada de respuestas para adaptarse a estas nuevas condiciones, como la producción de pequeñas moléculas de señalización de naturaleza lipídica en la membrana plasmática que rodea las células. Mediante el uso de genética, técnicas moleculares, microscopía avanzada y análisis de lípidos presentes en diferentes ubicaciones de las células vegetales bajo distintas circunstancias, este estudio revela cómo estas pequeñas moléculas lipídicas son transportadas al retículo endoplasmático. Es en esta red de membranas donde, tras varias reacciones químicas que transforman su estructura, son transportadas de vuelta a la membrana plasmática. Además, la investigación muestra cómo este sistema de tráfico permite la adaptación de las plantas a condiciones desfavorables.
“Estas moléculas son imprescindibles para que la planta se capaz de adaptarse a condiciones climáticas adversas, como cerrando estomas para evitar la pérdida de agua o permitir que la raíz siga creciendo para encontrar agua a mayor profundidad. El problema es que si las condiciones son desfavorables estas moléculas se acaban. Este reciclado permite que esto no pase”, explica Miguel A. Botella, investigador del IHSM que dirige el estudio.
La investigación se ha desarrollado con la colaboración de los investigadores Selene García-Hernández, Vitor Amorim-Silva, José Moya-Cuevas, Jessica Pérez-Sancho y Noemí Ruiz-López del IHSM La Mayora CSIC-UMA; los doctores Rafael Catalá y Julio Salinas del Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC); los doctores Vedrana Marković e Yvon Jaillais del Escuela Normal Superior de Lyon (ENS Lyon); y los doctores Richard Haslam, Louise Michaelson y Johnathan Napier del Rothamsted Research, en Reino Unido.
“Nuestro trabajo permite comprender cómo estos pequeños nanodominios entre dos membranas diferentes funcionan como autopistas que permiten a la planta reponer la membrana plasmática con moléculas de señalización”, concluye Botella.
IHSM La Mayora - CSIC Comunicación
Referencia científica:
García-Hernández N, Morello-López J, Haslam R, Amorim-Silva V, Moya-Cuevas J, Catalá R, Michaelson L, Pérez-Sancho J, Marković V, Salinas J, Napier J, Jaillais Y, Ruiz-López N, Botella MA. Concerted Transport and Phosphorylation of Diacylglycerol at ER-PM Contacts Sites Regulates Phospholipid Dynamics During Stress. PNAS. 2025. DOI: doi/10.1073/pnas.2421334122
Autor

CSIC
El Consejo Superior de Investigaciones Científicas (CSIC) es una agencia estatal adscrita al Ministerio de Ciencia, Innovación y Universidades. Su objetivo fundamental es desarrollar y promover investigaciones en beneficio del progreso científico y tecnológico, para lo cual está abierta a la colaboración con entidades españolas y extranjeras. Según la clasificación SIR World Report 2012, es la mayor institución pública dedicada a la investigación en España, habiendo llegado a ser la novena del mundo en 2012, según el SIR World Report 2012: Global Ranking (elaborado por SCImago Institutions Rankings) 3​ y la 16ª en 2017.