logo móvil

Identificación automática de células fotorreceptoras de cono basada en DeepLab y corrección del campo de sesgo con imágenes de oftalmoscopio láser de exploración óptica adaptativa.

Autores: Chen, Yiwei; He, Yi; Wang, Jing; Li, Wanyue; Xing, Lina; Zhang, Xin; Shi, Guohua

Idioma: Inglés

Editor: Hindawi

Año: 2021

Ver Artículo científico

Acceso abierto

Artículo científico


Categoría

Ingeniería y Tecnología

Licencia

CC BY-SA – Atribución – Compartir Igual

Consultas: 18

Citaciones: Sin citaciones


Descripción
La identificación de las células fotorreceptoras de cono es importante para el diagnóstico temprano de enfermedades oculares. Proponemos la identificación automática de células fotorreceptoras de cono mediante aprendizaje profundo en imágenes de oftalmoscopio de exploración láser de óptica adaptativa. El algoritmo propuesto se basa en DeepLab y corrección de campo de sesgo. Considerando la identificación manual como referencia, nuestro algoritmo es altamente efectivo, logrando una precisión, sensibilidad y puntuación F de 96.7%, 94.6% y 95.7%, respectivamente. Para ilustrar el rendimiento de nuestro algoritmo, presentamos resultados de identificación para imágenes con diferentes distribuciones de células fotorreceptoras de cono. Los resultados experimentales muestran que nuestro algoritmo puede lograr una identificación precisa de células fotorreceptoras en imágenes de retinas humanas, lo cual es comparable a la identificación manual.

Documentos Relacionados

Temas Virtualpro