Máquina de aprendizaje extremo convolucional profundo y su aplicación en la clasificación de dígitos manuscritos
Autores: Shan, Pang; Xinyi, Yang
Idioma: Inglés
Editor: Hindawi Publishing Corporation
Año: 2016
Acceso abierto
Artículo científico
Categoría
Ingeniería y Tecnología
Licencia
CC BY-SA – Atribución – Compartir Igual
Consultas: 8
Citaciones: Sin citaciones
En los últimos años, se han desarrollado algunos métodos de aprendizaje profundo y se han aplicado a aplicaciones de clasificación de imágenes, como la red neuronal convolucional (CNN) y la red de creencia profunda (DBN). Sin embargo, adolecen de algunos problemas como los mínimos locales, la lenta tasa de convergencia y la intensa intervención humana. En este trabajo, proponemos un método de aprendizaje rápido, a saber, la máquina de aprendizaje extremo convolucional profunda (DC-ELM), que combina la potencia de la CNN y el entrenamiento rápido de la ELM. Utiliza múltiples capas de convolución alternas y capas de agrupación para abstraer eficazmente las características de alto nivel de las imágenes de entrada. A continuación, las características abstraídas se introducen en un clasificador ELM, lo que conduce a un mejor rendimiento de generalización con una mayor velocidad de aprendizaje. DC-ELM también introduce un pooling estocástico en la última capa oculta para reducir la dimensionalidad de las características en gran medida, ahorrando así mucho tiempo de entrenamiento y recursos computacionales. Evaluamos sistemáticamente el rendimiento de DC-ELM en dos conjuntos de datos de dígitos escritos a mano: MNIST y USPS. Los resultados experimentales muestran que nuestro método logró una mejor precisión en las pruebas con un tiempo de entrenamiento significativamente menor en comparación con los métodos de aprendizaje profundo y otros métodos ELM.
Descripción
En los últimos años, se han desarrollado algunos métodos de aprendizaje profundo y se han aplicado a aplicaciones de clasificación de imágenes, como la red neuronal convolucional (CNN) y la red de creencia profunda (DBN). Sin embargo, adolecen de algunos problemas como los mínimos locales, la lenta tasa de convergencia y la intensa intervención humana. En este trabajo, proponemos un método de aprendizaje rápido, a saber, la máquina de aprendizaje extremo convolucional profunda (DC-ELM), que combina la potencia de la CNN y el entrenamiento rápido de la ELM. Utiliza múltiples capas de convolución alternas y capas de agrupación para abstraer eficazmente las características de alto nivel de las imágenes de entrada. A continuación, las características abstraídas se introducen en un clasificador ELM, lo que conduce a un mejor rendimiento de generalización con una mayor velocidad de aprendizaje. DC-ELM también introduce un pooling estocástico en la última capa oculta para reducir la dimensionalidad de las características en gran medida, ahorrando así mucho tiempo de entrenamiento y recursos computacionales. Evaluamos sistemáticamente el rendimiento de DC-ELM en dos conjuntos de datos de dígitos escritos a mano: MNIST y USPS. Los resultados experimentales muestran que nuestro método logró una mejor precisión en las pruebas con un tiempo de entrenamiento significativamente menor en comparación con los métodos de aprendizaje profundo y otros métodos ELM.